
White Paper, First Draft: The Design of
Software-based Smart hub supporting multiple

wireless technlogies.?

No Author Given

No Institute Given

Abstract. IoT smart hub is a software-based module that acts as the
central point connecting and controlling the access to different smart
devices in the system. This proposed software-based smart hub supports
different wireless technologies such as LoRa, Bluetooth and WiFi. The
fine-grained access control system is also integrated into the design of
smart hub system architecture. This paper covers extensive number of
tasks aiming to define the general specification of software based smart
hub; it presents also the design and implementation of the smart hub.

Keywords: LoRa; WiFi; Bluetooth BLE; smart home; IoT; security;
smart home hub;

1 Introduction

Internet of Things (IoT) [25] can be described as connecting everyday objects
like mobile phones, smart watches, electronic tablets, sensors and actuators to
the Internet where the devices are intelligently linked together enabling various
ways to communicate and control between things and peoples, and between
things themselves. IoT devices use various network technologies (e.g. wire or
wireless) for their communication. However, the most popular of which is the
wireless network technologies such as Wifi, Bluetooth and the new emerging
technology LoRa [23], which supports long range communication and requires
less energy consumption.

In general, IoT devices are connected to smart hub, through which user can
control and access them. The smart hubs, existed in the market, are built by
different companies (e.g. samsung smartthing, logitech harmony, etc. ) [16] based
on different specifications and design. And they are generally embedded into their
devices, which are expensive. Thus, our goal is to provide the alternative for user
in building their IoT systems, instead of relying on the company-made smart hub
device, user can use the software-based smart hub supporting multiple network
technologies. This software-based smart hub can be installed in any low-cost
device such as Raspberry-pi [24].

In this paper, we address the issue of building the secure software-based
smart hub for IoT system where the security aspect is integrated into the system

? This work is supported by FEDER-IDEE Project.



2 Specification of software-based smart hub

architecture. The work presented in this paper are divided into three main parts.
The first of which focuses on the software-base smart hub protocol stack and
global system architecture. The second part is about the physical and functional
architecture and the last part dedicates to the implementation of this system.

This paper is structured as follows. Section 2 software based smart hub pro-
tocol stack. Section 3 talks about the functional requirements and global ar-
chitecture of smart hub. Section 4 is about the detailed client interface system
architecture. Section 5 focuses on the implementation of smart hub. Section 6 is
about the communication message format between different modules. Section 7
presents sequence diagrams for different access scenarios for three different wire-
less network technologies: LoRa, Bluetooth and WiFi. Section 8 is the conclusion.

Fig. 1. High level smart hub protocol stack

2 Software-based smart hub protocol stack

The main role of software-based smart hub is to facilitate the communication
between IoT client application and the smart devices through different network
technologies. To do so, smart hub should be able to communicate with different
devices supporting different network technologies, hence, multiple network APIs
must be integrated into smart hub. Smart hub is actually the central point of
controlling, it controls all the requests both from the IoT client application as
well as the devices. Thus, the access control API should also be integrated into
smart hub to ensure proper security protection. The Figure 1 provides the high
level protocol stack of smart hub.

– Layer 1 is where the devices are handled. The devices are heterogenous, in the
sense that they can support different network technology and configuration.



Specification of software-based smart hub 3

– Layer 2 is the network management layer where the information from differ-
ent devices are processed according to the network technologies used. Three
module are proposed to support three different technologies. They are LoRa,
Bluetooth and WiFi network management module.
1. LoRa network management module is responsible for managing all the

incoming and outgoing request from lora nodes.
2. Bluetooth network management module is responsible for managing the

incoming and outgoing request from bluetooth nodes.
3. WiFi network management module is responsible for managing the the

incoming and outgoing request from WiFi nodes.
– layer 3 is where all the communication messages are controlled and ex-

changed. In this layer there are two important modules.
1. Message management protocol is responsible for subscribing and pub-

lishing the data and requests from client application to devices and vice
versa.

2. Access control module is responsible for controlling all the incoming
requests and outgoing data. All the instructing request to devices must
be approved by access control model before any action can be executed.

– Client Application Program Interface is a module responsible for providing
the structure data to the client application where the data is processed or
displayed. The data can be structure with different language such as JSON,
XML or other data expression/represention language.

We propose this architectures based the assumption that the existing smart home
hub does not support access control mechanism and it uses only the traditional
authentication method for securing devices and data pertaining to them.

3 Functional requirements and Global Architecture of
smart hub

In this section, we focus on the functional requirements and smart hub’s archi-
tecture.

3.1 Smart Hub Functional requirements

The main objective of building Smart Hub is to centralize and facilitate user in
devices and access control policies management. Furthermore, the hub should
be able to support different network technologies. Given that, smart hub should
support different communication protocols and security mechanisms to be able
to interoperate with different devices. The below functional requirements should
exist in the design of our proposed smart hub.

1. Usability. User should be able to perform different settings to allow smart
hub to connect to different devices supporting different network technologies.

2. Security. The communication between smart hub and devices should be se-
cure.



4 Specification of software-based smart hub

3. Extensibility. Smart hub should be extensible. If new network technology is
available in the market, the hub can operate with them by just extending its
network management interface without going through major modification.
This adjustment should be possibly done by ordinary user with a software
package update.

4. Access Control. Smart hub should be able to provide the fine-grain access
control to devices and data pertaining to them. User should also be able to
enable or disable the access control option.

Fig. 2. Smart hub physical architecture

3.2 Smart hub physical system architecture

As shown in Figure 2, smart hub architecture consists of different components. It
can be divided into two main parts: network interface and client interface. First
part of the architecture is for interfacing between smart hub and smart devices
with different network technologies. The second part is the client interface where
user can, through different type of devices (e.g. smart phone, android TV, etc.),
connect to smart hub for system setting, device management and access control
and instructing devices.



Specification of software-based smart hub 5

1. Client interface.
– Policy Enforcement Point (PEP) is responsible for enforcing the duties

that user or system needs to perform before or after access permission
to device or data is granted.

– Message management system is a module responsible for managing all
the incoming and out going message between client application and de-
vices in the system. It supports different message management protocols
(e.g. MQTT, Websocket, etc.) that are used for exchanging structure
data between client application and smart hub or smart hub and smart
devices installed in the network. This module also contains a sub-module
that is responsible for structuring data into a standard message structure
(e.g. xml, json, etc.) used for each message management protocol.

– Policy Administration Point (PAP) is a part of access control module.
Through this module, user can manage the access control policies to
devices as well as smart home. It allows user to create access control
policies for a particular user and devices, to remove unwanted policies
and to edit the existing policies. The main function of this module is
to produce the access control polices and store them in the designated
storage.

– Device management module. This module is responsible for managing
devices in the network. This module acts as the intermediately between
client application and smart hub. The module allows user to add, remove
and configure devices in the network. It also allows user to set different
actions required for device operation.

– System setting module is responsible for providing user with comprehen-
sive interface for setting up the mega hub and other modules embedded
in mega hub.

– Policy Decision Point (PDP) and policy storage. This module has two
parts. First of which is the PDP that is responsible for deciding whether
to grant or deny access to devices based on user’s request. The decision
is done based on the defined policy in the storage. The second part is
the policy storage, which is responsible or managing the policies created
by PAP module. The management includes, how to store, to secure and
to retrieve policies.

2. Network Interface is a module responsible for managing different network
technologies in the system. Three wireless technologies are considered in
our design of smart hubs: WiFi, LoRa and Bluetooth. It is worth noting
that all the communication messages between user and devices need to get
through this module. This module actually has the direct communication
with message management system in Client Interface.
– Lora Network Interface allows smart hub to communicate, push or pull

data to and from LoRa supporting devices in the network. This interface
consists of two main modules. The first module consists of a set of LoRa
modules allowing LoRa network to function such as LoRa application
server, LoRa network server and LoRa gateway. The second module is
the interface between LoRa network module with message management



6 Specification of software-based smart hub

system. This second module is responsible for sending data or retrieving
data from LoRa devices through LoRa network. Then, it subscribes or
publishes data to message management system using different messaging
protocol such at MQTT, Websocket or other protocols.

– Bluetooth Network Interface Module is responsible for managing all com-
munications and messages exchanged between client interface and blue-
tooth supporting devices. Bluetooth network interface creates the star
bluetooth network topology where devices are paired and exchanged data
with a master or server, which is a part of bluetooth network interface.
Beside its main role in constructing and managing bluetooth network, it
also has an internal module, which is responsible for pushing and pulling
data between client interface and bluetooth devices.

– WiFi Network Interface is responsible for managing all the communica-
tions between client interface and smart devices supporting WiFi net-
work. Once the device joints WiFi network, smart device can publish or
subscribe data to message management system through this interface.

Fig. 3. Policy Enforcement Point Architecture



Specification of software-based smart hub 7

4 Detailed Client Interface System Architecture

In this section, we detail the architecture of each components of the Client
Interface module, see Figure 2.

4.1 Policy Enforcement Point

The PEP’s system architecture consists of the following components, see Figure
3.

1. User is the client’s API used as an interface between physical person and
smart hub. It can be web application or user desktop. All user’s request are
sent through this module.

2. User’s request formatting and structuring is a module in PEP, which is
responsible for formatting user’s request and structuring data to the re-
quired format of policy decision point. For example, formatting request into
XACML standard request or JSON data’s structure.

3. Request forwarder is responsible for forwarding the formatted request to
policy decision point.

4. Decision receiver retrieves the decision made by policy decision point and
forwards the decision to context and obligation handler.

5. Context and obligation handler is responsible for examining all the requires
obligations that need to be performed by user or system before allowing
user to access device. After identifying the obligation it sends request to
obligations module for executing.

6. Obligations module is responsible for executing all the required obligations
by user or system.

7. User’s notification is responsible for notifying user either about the required
obligation that needs to be executed or about the access permission decision
made by PDP.

8. Resources handler is responsible for handling the devices, this module is
generally waiting the answer from context and obligation handler before
releasing the access flow to user.

The step-by-step information flow is presented below, see Figure 3.

Figure 1: step-by-step information flow explanation

1) User sends access request to policy enforcement point. The request is then
formatted and structured to the required standard.
2) Once access request is correctly formatted, the formatted request is sent to
request forwarder.
3) Request forwarder is then forward the request to policy decision for valida-
tion.
4) Policy decision point performs policy validation against the available polices
and the decision is then sent to decision receiver.
5) Decision receiver upon receiving the decision, it sends the decision with other



8 Specification of software-based smart hub

required actions that need to be executed to context and obligation handler.
6) If one or many obligations need to be fulfilled by user or system, obligation
handler sends the request to obligations execution module.
7) Once the obligation is executed, it sends the acknowledgement to context and
obligation handler to proceed.
8) Obligations module also send an acknowledgement to user’s notification mod-
ule.
9) Context and obligation handler signals the resource handler to release the
flow if obligations are cleared.
10) User is notified.
11) Resources handler allows access.
12) User access devices.

Fig. 4. Message management system

4.2 Message management system

As defined previously, the role of message management module is responsible for
managing the the incoming and out going message between client Interface and
network modules. It also manages the information exchange between different
components in client interface module. This module has three sub components.

– Message handler is responsible for formatting message to the required struc-
ture before publishing it.

– Public module is used to publish data got from a particular module in the
system.

– Subscribe module is used to get data from a particular module in the system.



Specification of software-based smart hub 9

In our proposed global system architecture, message management system com-
municates with four system components: the PEP, PDP, Network interface and
user’s application.

4.3 Policy Administration Point

The policy administration point is used to manage the access control policies
defined for users. The detailed of PAP specification can be found in [20].

Fig. 5. Device management system

4.4 Device management module

In this section, we detail the device management module. This module allows
user to add or remove device from the network. It also allows user to change
device’s setting. Figure 5 shows the detailed component of device management
system.

– User is the client application allowing physical user to send request and input
information required for device management operation.

– Input device information is a module responsible for temporarily storing
device information provided by user. This information can be provided to
other module in the system if required.

– Add device allows physical user to add IoT device into the network. Since our
system supports different types of device for different network technologies,
the information required for each device is also different.

– Edit allows user to modify the general information of a particular device.
– Remove allows user to remove a particular device from the device storage.



10 Specification of software-based smart hub

– Setting allows user to change the device’s setting. For example, change a
WiFi device to LoRa device or Bluetooth.

– Show allows user to show the existing devices in the network.
– Device’s information storage is a module responsible for storing the device’s

information.

Fig. 6. Smart hub system setting

4.5 Smart Hub system setting

Smart hub system setting allows user to set different environment parameters
for smart hub so that it can function correctly. The settings are divided into
different part depending on types of network technology user wishes to user.
There are three different settings for three types of network technologies: LoRa,
WiFi and bluetooth system setting. As shown in Figure 6, the setting consists
of the following components.

1. User is the super user or system admin who has rights to perform system
setting.

2. Lora setting, this module is responsible for setting up all required parameters
needed for hub to function correctly under LoRa. Three different settings
need to be performed: Lora network, lora app server and lora broker settings.

3. Bluetooth setting is responsible for managing all the parameters required to
be set in order for bluetooth to work correctly. Since communication between
bluetooth module and client application uses MQTT, we need to set up the
broker for bluetooth module. In addition to that, we need also to set up the
pub/sub title structure for broker client.

4. WiFi setting is for setting up the parameters for WiFi communication.
MQTT broker needs also to be set up in this module.



Specification of software-based smart hub 11

4.6 Policy Decision Point

See the implementation of PDP in [21]

Fig. 7. Smart hub functional architecture

5 Implementation of smart hub

In this section, we focus on the implementation of the software-based smart hub.
We also detail each software components and the technologies used to build this
hub. This smart hub is designed to work primarily with raspberry pi, however,
it can also be installed in other linux system.

5.1 System architecture

As shown in Figure 7, the system consists of the following modules.

– Client application module is an interface between physical user and the sys-
tem. This module handles the user’s request and processes data provided by



12 Specification of software-based smart hub

devices in the network. Client application module can be developed sepa-
rately from the smart hub system. In our system prototype, we implemented
client application as the web-based client application.

– Message management is a central component that manages all the incoming
and out-going messages from different modules in the system. in our imple-
mentation, we use MQTT as the messaging protocol, hence, MQTT broker
is used as the message management module.

– XACML engine is the access control module, which is responsible for val-
idating all the user requests. In our implementation, we use XACML 2.O
Java-enterprise XACML.

– The final set of components are for LoRa, WiFi and Bluetooth network
management components. The detailed of them are presented in the following
section.

5.2 Lora module

Lora module consists of the lora network and response management module,
which is responsible for handling all the data flow from lora network nodes to
the client application. This module is developed in python language and the com-
munication between this module and the central message management module is
done based on MQTT protocol. The core components of lora module is divided
into two main parts: the response management module (Lora proxy) and the
core LoRa network system consisting of many more sub components.

1. Response management of LoRa. This module is responsible for retrieving and
forwarding data to and from lora network to message management module.
It acts like a proxy between lora network and client application module. We
developed this module in Java as the MQTT (MQTT Paho [27]) client that
can subscribe and publish data from and to Lora network. It can also publish
and subscribe data to and from message management module.

2. Core Lora network module consists of Lora network server, Lora application
server and lora gateway. The lora package sent by Lora node is securely pro-
cessed in this network module. In our implementation the open source lora
server is used and the detailed of lora server architecture and implementation
can be found in [22].

5.3 Bluetooth module

The bluetooth module consists of two sub components: the response management
module and the core bluetooth network.

1. Response management module acts like the bluetooth proxy managing the
incoming and out-going data to and from bluetooth network.

2. Bluetooth core network is responsible for processing the data to and from
bluetooth nodes. We implement the star topology network where a bluetooth
server is stalled in Raspberry pi and acts as the central point of contact to



Specification of software-based smart hub 13

other bluetooth supporting device. This server can scan all the devices in
range or initiate the add-hoc connection to bluetooth device upon the request
from client application. The bluetooth network in constructed using Bluepy
library [26].

5.4 WiFi module

The WiFi module is responsible for processing data from wifi supporting de-
vices. This module is more straight forward if compared with bluetooth and
Lora. The message exchange is done directly with central message management
module through MQTT messaging protocol. WiFi node generally subscribes for
the decision from XACML’s decision and the instruction from message manage-
ment module. Wifi node does two possible things after getting decision. Either
to publish data or execute the instruction.

5.5 XACML engine

The XACML access control engine design can be found in [11].

6 Communication message format between different
modules

In this section, we define the communication messages between different compo-
nents of smart hub. The messages structure we defined in this section are mostly
related to the text structure of subscribe and publish of MQTT protocol. It also
covers the structure of user request in XACML standard request language [11].
For the access control policy expression, one can find the details in [11].

6.1 Message structure: client application: publish access request
and action on device instruction

We design the smart hub in such a way so that the developer can build their own
client application and connect to smart hub. The communication between client
application and smart hub is defined. We use the standard XACML [11] request
expressed in XML. When there is an access request from user, client applica-
tion forms XACML request and publishes the request to message management
module where access request will be retrieved by XACML PDP engine. It is
worth noting that we use MQTT protocol as messaging protocol, hence, client
application module must support this protocol. Client application publishes the
request by following the below submission structure.

publishing topic: PDP request
publishing value: the standard XACML 2.0 access request.

In access request, device EUID is used as the unique identification of each device



14 Specification of software-based smart hub

and EUID is used as the resource in XACML.
The second publish topic concern the instruction on device if the PDP’s deci-
sion is positive. The structure of publish topic varies depending on the type of
network technology used.

– Lora. In case of lora network the topic that client application needs to use
depending on each lora network distribution. For example, in our imple-
mentation, we use Lora server [23], the topic should be formulated in the
following structure.

publishing topic: APP/APPID/Node/NodeID/TX
publishing value: The JSON file containing the device EUID and
other required information. For more details, see [25]

– Wifi. In case of WiFi network, client application needs to publish the follow-
ing structure.

publishing topic: Device EUID
publishing value: 0 for turn-on and 1 for turn-off instruction. 2 for
get instruction.

– Bluetooth. In case of bluetooth, client application needs to publish the fol-
lowing structure. publishing topic: Device EUID
publishing value: 0 for turn-on and 1 for turn-off instruction. 2 for
get instruction.

Concerning subscription for data, client application module needs to sub-
scribe two topics. The decision by PDP engine and the data published by de-
vices. Again for subscription of data, the subscribed topic varies depending on
type of technology used.

– Lora. In case of lora, the subscription structure is
APP/APPID/Node/NodeID/RX .

– Wifi. In case of WiFi network, client application needs to subscribe Device
EUID.

– Bluetooth. In case of WiFi network, client application needs to subscribe
Device EUID.

Concerning subscription for PDP’s decision, client application module needs to
use the following structure for subscription.

– Lora. In case of lora, the subscription structure is Decision DeviceEUID.
– Wifi. In case of WiFi network, client application needs to subscribe Deci-

sion DeviceEUID.
– Bluetooth. In case of WiFi network, client application needs to subscribe

Decision DeviceEUID.



Specification of software-based smart hub 15

6.2 Message structure: XACML engine: subscribe access request
and publish decision

PDP module acts as policy evaluation module where the access request is vali-
dated against defined access control policies. Thus, to get access request, PDP
needs to subscribe the access request with the following topic: PDP-request.

Once the PDD gets access request, it evaluates the access request. If the de-
cision is positive, PDP publishes the action that device needs to perform. The
publishing structure is as follows.

publishing topic: Decision deviceEUID .

In case of bluetooth, the publishing topic is BLE decision and the value has
the following structure. ”Device EUID action ”. The action can be 0, 1, 2. 0 is
turn-off, 1 is turn-on and 2 is get.

publishing value: 0 for turn-on and 1 for turn-off instruction. 2 for
get instruction.

6.3 Message structure: Lora Proxy: subscribe PDP’s decision and
action and publish device’s data

Lora proxy needs to know the decision made by PDP engine before process-
ing further action. To get decision and action allowed from PDP engine, Lora
proxy needs to subscribe the defined topic: Decision deviceEUID. The value of
Decision deviceEUID is the action allowed on device.

Lora proxy can also publish back the value provided by requested device.
The publishing structure is as follows.

publishing topic: deviceEUID .

publishing value: value provided by device.

6.4 Message structure: Bluetooth Proxy: subscribe PDP’s decision
and action and publish device’s data

Bluetooth proxy needs to know the decision made by PDP engine before pro-
cessing any action requested by client application. To get the decision and action
allowed from PDP engine, Bluetooth proxy needs to subscribe the defined topic:
Decision deviceEUID. The value of Decision deviceEUID is the action allowed
on device. The action can be 0, 1, 2. 0 is turn-off, 1 is turn-on and 2 is get.

In case of get, bluetooth node needs to send uplink the node’s value. Thus,
the publishing topic is.

publishing topic: deviceEUID .
publishing value: value provided by device.



16 Specification of software-based smart hub

It is worth noting that in case of bluetooth, the bluetooth proxy acts or MQTT
client that can publish or subscribe. The bluetooth proxy has direct connection
with bluetooth node.

6.5 Message structure: Wifi: subscribe PDP’s decision and action
and publish device’s data

Unlike LoRa or Bluetooth, WiFi has a very simple architecture, it connects
directly to message management module without passing any proxy. In case of
WiFi, MQTT client is integrated into the node where it can publish or subscribe
for a topic. WiFi node subscribes for decision from PDP engine and publish the
data depending on the request from client application.

subscribe topic: Decision deviceEUID .

publishing topic: deviceEUID .

publishing value: value provided by device.

7 Sequence diagrams

In this section we present the sequence diagram showing the interaction between
different modules (see Figure 7). We separate the diagrams into three different
parts. The sequence diagram for LoRa, Bluetooth and WiFi communication.

Fig. 8. LoRa: sequence diagram, turn-on and off action request

7.1 LoRa: Sequence diagram

In case of LoRa there are two sequence diagrams for two different sets of sce-
narios: Turn-on or off and get (get data from node). These two scenarios have
different number of processing and communication between modules.



Specification of software-based smart hub 17

1. Turn-on or off. In case of turn-on or off, client application needs to send a
request and the access request to turn on or off needs to be validated against
predefined access control policy at PDP XACML engine. The PDP engine,
after policy validation and in case of possible decision, publishes the decision
response (contain the action the device needs to perform) to message man-
agement module (central broker). Then, LoRa proxy subscribes the PDP
decision and sends downlink message, through LoRa network, to lora node.
The detailed sequence diagram is shown in Figure 8. The step-by-step infor-
mation flow is presented below, see Figure 8.

Figure 8: step-by-step information flow explanation

1) When physical user executes an access request, client application forms
the access request and publishes it to management management module
(MQTT broker).
2) XACML engine subscribes the access request and is waiting for the call-
back from message management module.
3) After getting an access request, XACML engine validates the request
against the predefined access control policies. If the decision is positive,
XACML PDP publishes the decision response to message management mod-
ule.
4) LoRa proxy subscribes for the decision from XACML PDP engine.
5) If decision response is positive, LoRa proxy extracts the necessary infor-
mation from decision response, such as action on device and device EUID,
and publishes those data to LoRa application server.
6) LoRa application server communicates with LoRa network server and
sends the downlink message (required action that needs to be executed) to
LoRa node (identified by device EUID).

Fig. 9. LoRa: sequence diagram, get action request



18 Specification of software-based smart hub

2. Get. When user wants to get data from device (e.g. temperature, humidity,
etc. sensors). “Get” action needs to be executed. Client application forms
an access request and sends it to PDP XACML engine for validation. If
the access request is granted, PDP engine sends the decision response to
client application and LoRa proxy for further processing. LoRa proxy sends
downlink message containing get action to LoRa application server where
the message is further forwarded to LoRa node. Upon receiving the “get
action” instruction, LoRa node starts sending uplink message (containing
required information) to LoRa network server and application server. LoRa
proxy subscribes for data sent by LoRa node and publishes it to message
management module. Finally, client application subscribe data from LoRa
node from massage management module.

The step-by-step information flow is presented below, see Figure 9.

Figure 9: step-by-step information flow explanation

1) When physical user executes an access request, client application forms the
access request and publishes it to message management module (MQTT broker).
2) XACML engine subscribes the access request and is waiting for the callback
from message management module.
3) After getting an access request, XACML engine validates the request against
the predefined access control policies. If the decision is positive, XACML PDP
publishes the decision response to message management module.
4) LoRa proxy subscribes for the decision from XACML PDP engine.
5) If decision response is positive, LoRa proxy extracts the necessary information
from decision response, such as action on device and device EUID, and publishes
those data to LoRa application server.
6) LoRa application server communicates with LoRa network server and sends
the downlink message (required action that needs to be executed “get”) to LoRa
node (identified by device EUID).
7) LoRa node sends uplink message to LoRa network module.
8) LoRa proxy module subscribes from LoRa network module the message sent
by LoRa node.
9) LoRa proxy extracts the information from the message and publishes the
required information to message management module.
10) Client application subscribes the data sent by LoRa node from message
management module.

7.2 Bluetooth: Sequence diagram

Like LoRa, for Bluetooth technology, there are two sequence diagrams for two
different sets of scenarios: Turn-on or off and get (get data from node). These
two scenarios have different number of processing and communication between
modules.



Specification of software-based smart hub 19

1. Turn-on or off. In the scenarios where turn-on or off is used, some processing
steps in bluetooth are the same to that of LoRa. For example, the access re-
quest needs to be validated by XACMl PDP engine module. The different is
that instead of LoRa proxy, Bluetooth proxy is responsible for communicat-
ing the access request message to bluetooth device or node. The step-by-step
information flow is presented below, see Figure 10.

Figure 10: step-by-step information flow explanation

1) When physical user executes an access request, client application forms
the access request and publishes it to message management module (MQTT
broker).
2) XACML engine subscribes the access request and is waiting for the call-
back from message management module.
3) After getting an access request, XACML engine validates the request
against the predefined access control policies. If the decision is positive,
XACML PDP publishes the decision response to message management mod-
ule.
4) Bluetooth proxy subscribes for the decision from XACML PDP engine.
5) If decision response is positive, Bluetooth proxy extracts the necessary in-
formation from decision response, such as action on device and device EUID,
and publishes those data to Bluetooth network module.
6) Bluetooth network module communicate the message to bluetooth de-
vice/node.

Fig. 10. Bluetooth: sequence diagram, turn-on and off action request

2. Get. In case of “get” action, the process is similar to that of “get” in LoRa
technology. The differences are at Bluetooth proxy and Bluetooth network.
For Bluetooth network, when user requests an access to Bluetooth device,
through client application, client application forms the request and com-
municates this request to XACML PDP engine where the request is vali-
dated against the predefined access control policies. If the decision is posi-



20 Specification of software-based smart hub

tive. XACML PDP publishes the decision response to message management
module. Bluetooth proxy needs to subscribe for PDP decision response. After
getting the decision response, Bluetooth proxy publishes the data extracted
from decision response to Bluetooth network. Bluetooth network communi-
cation the action (“get”) to Bluetooth node. Once node receives the “get
action”, it communicates data uplink with Bluetooth network module. The
following step is the subscription of node’s data from Bluetooth network by
Bluetooth proxy. Once the Bluetooth proxy gets node’s data, it publishes
these data to message management module. Client application subscribes
the node’s data from message management module.

Fig. 11. Bluetooth: sequence diagram, get action request

The step-by-step information flow is presented below, see Figure 11.

Figure 11: step-by-step information flow explanation

1) When physical user executes an access request, client application forms the
access request and publishes it to message management module (MQTT broker).
2) XACML engine subscribes the access request and is waiting for the callback
from message management module.
3) After getting an access request, XACML engine validates the request against
the predefined access control policies. If the decision is positive, XACML PDP
publishes the decision response to message management module.
4) Bluetooth proxy subscribes for the decision from XACML PDP engine.
5) If decision response is positive, Bluetooth proxy extracts the necessary infor-
mation from decision response, such as action on device and device EUID, and
publishes those data to Bluetooth network.
6) Bluetooth application server communicates with LoRa network server and
sends the downlink message (required action that needs to be executed “get”)
to Bluetooth node (identified by device EUID).



Specification of software-based smart hub 21

7) Bluetooth node sends uplink message to Bluetooth network module.
8) Bluetooth proxy module subscribes from Bluetooth network module the mes-
sage sent by Bluetooth node.
9) Bluetooth proxy extracts the information from the message and publishes the
required information to message management module.
10) Client application subscribes the data sent by Bluetooth node from message
management module.

7.3 WiFi: Sequence diagram

In case of WiFi, there are also two sequence diagrams for two different sets of
scenarios: Turn-on or off and get (get data from node). These two scenarios have
different number of processing and communication between modules.

Fig. 12. WiFi: sequence diagram, turn-on and off action request

1. turn-on or off. In case of WiFi technology, the process is easier compared
with LoRa and Bluetooth. When user instructs the WiFi device to turn-on or
off, the access request is formed at client application module and this request
is forwarded to XACML PDP engine where the access request is validated.
if XACML PDP provides the positive response, the decision response is pub-
lished to message management module. WiFi node subscribes PDP decision
in which device’s EUID and the action needs to be executed are embedded.
The step-by-step information flow is presented below, see Figure 12.

Figure 12: step-by-step information flow explanation

1) When physical user executes an access request, client application forms
the access request and publishes it to message management module (MQTT
broker).
2) XACML engine subscribes the access request and is waiting for the call-
back from message management module.



22 Specification of software-based smart hub

3) After getting an access request, XACML engine validates the request
against the predefined access control policies. If the decision is positive,
XACML PDP publishes the decision response to message management mod-
ule.
4) WiFi node subscribes the decision response from message management
module.

Fig. 13. WiFi: sequence diagram, get action request

2. Get. When user want to get data from WiFi device, the “get” request is in-
structed. Client application forms the request and send it to XACML PDP
engine. Upon receiving the request, PDP engine validated the access request
and publishes the decision response to message management module in case
of positive decision. WiFi node subscribes the decision response. When node
sees “get” action, it publishes the data back to message management module
and finally client application subscribes the node’s data. The step-by-step
information flow is presented below, see Figure 13.

Figure 13: step-by-step information flow explanation

1) When physical user executes an access request, client application forms
the access request and publishes it to message management module (MQTT
broker).
2) XACML engine subscribes the access request and is waiting for the call-
back from message management module.
3) After getting an access request, XACML engine validates the request
against the predefined access control policies. If the decision is positive,
XACML PDP publishes the decision response to message management mod-
ule.
4) WiFi node subscribes the decision response from message management
module.



Specification of software-based smart hub 23

5) WiFi node publishes the node’s data to message management module.
5) Client application subscribes node’s data from message management mod-
ule.

8 Conclusion

In this paper, we present the first draft of the design of smart hub. The presen-
tation includes: smart hub protocol stack, the smart hub physical architecture
and its functional architecture for prototype implementation. The messaging
protocol and structure are also presented in this paper. The detailed sequence
diagrams are presented for the access scenarios in three different wireless tech-
nologies: LoRa, WiFi and Bluetooth. We also developed a complete prototype
software-based smart hub that can be used to connect three wireless network
technologies, such as lora, wifi and bluetooth. Our future work is to focus on the
design of policy administration point and refining the smart hub software.

References

1. Bruce Ndibanje, Hoon-Jae Lee and Sang-Gon Lee. Security Analysis and Improve-
ment of Authentication and Access Control in the Internet of Things. Open access
Sensors, 14(8), 14786-14805; doi:10.3390/s140814786, 2014.

2. Rahul Godha, Sneh Prateek and Nikhita Kataria. Home Au- tomation: Access Con-
trol for IoT Devices. International Journal of Scientific and Research Publication,
Volume 4, Issue 10, October 2014, ISSN 2250-3153.

3. Blase Ur, Jaeyeon Jung and Stuart Schechter. The current State of Access Con-
trol for Smart Devices in Homes. Workshop on Home Usable Privacy and Security
(HUPS), July 24-26, 2013, Newcastle, UK.

4. Ricardo Neisse, Gary Steri, Igor Nai Fovino and Gianmarco Baldini. SecKit: A
Model-based Security Toolkit for the Internet of Things. The journal of Computer
and Security (2015), page 60-76. Published by ELSEVIER.

5. Sachin Babar, Parikshit Mahalle, Antonietta Stango, Neeli Prasad and Ramjee
Prasad. Proposed Security Model and Threat Taxonomy for the Internet of Things.
International Conference on Network Security and Applications (CNSA 2010). Re-
cent Trends in Network Security and Applications pp 420-429. Published in Springer
2010.

6. J. Sathish Kular and Dhiren R. Patel. A survey on Internet of Things: Security and
Privacy Issues. International Journal of Computer Applications. Volume 90. No 11,
March 2014.

7. Assessement of Access Control Systems. National Institute of Standards
and Technology. Technology Administration U.S. Department of Commerce.
http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf

8. Smart Home service providers. http://www.sensorsmag.com/components/top-10-
smart- home-service-providers-us

9. Definition of cloud service. http://www.webopedia.com/TERM/C/cloud ser-
vices.html



24 Specification of software-based smart hub

10. Agrawal, Rakesh and Imielinski, Tomasz and Swami, Arun. Mining Association
Rules Between Sets of Items in Large Databases. SIGMOD Rec. June 1, 1993. Vol
22, No 2., New York, NY, USA.

11. Extensible Markup Language (XACML). http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

12. M. Schiefer. Smart Home Definition and Security Threats. Ninth International
Conference on IT Security Incident Man- agement IT Forensics. pages. 114-118,
May 2015.

13. Jose L. Hernandez-Ramos, Antonio J. Jara, Leandro Marin and Antonio F.
Skarmeta. Distributed Capability-based Access Control for the Internet of Things.
Journal of Internet Services and Information Security (JISIS), volume: 3, number:
3/4, pp. 1-16.

14. N. Komninos and E. Philippou and A. Pitsillides. Survey in Smart Grid and Smart
Home Security: Issues, Challenges and Countermeasures. IEEE Communications
Surveys Tutorials. vol. 16, No. 4, P. 1933-1954, 2014.

15. Wireless Technologies. https://www.link-labs.com/blog/types- of-wireless-
technology

16. Samsung smart thing . https://www.smartthings.com/
17. One M2M specification. http://www.onem2m.org/
18. Logitech harmony. http://www.logitech.com/en- us/product/harmony-hub
19. Google hub. https://on.google.com/hub/
20. PAP design and specification. https://doc.info.fundp.ac.be/mediawiki/index.php/

FEDER-IDEE PAP: Policy Administration Point
21. PDP design and specification https://doc.info.fundp.ac.be/mediawiki/index.php/

FEDER-IDEE publication
22. Private LoRa server. https://github.com/brocaar/loraserver-setup
23. LoRa Alliance. https://www.lora-alliance.org/
24. Raspberry Pi. https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
25. Internet of Things. https://www.thethingsnetwork.org/
26. Bluepy. https://github.com/IanHarvey/bluepy/tree/master/bluepy
27. MQTT Paho. https://pypi.python.org/pypi/paho-mqtt


